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Transient f ikrarion in a deformable fracture collector is described 
by nonlinear differential equations of parabolic type 

t 0 lfr/(P) OPj] t OP kro 

in which ~Y0 is the coefficient of pressure permeabili ty,  1~ T is the 
coefficient of elastic capacity,  f(P) is the pressure function, and kTa 
is the permeabi l i ty  for P = P0- 

As for pressure recovery we seek a solution to (1) by the smal l -  
parameter  method [1, 2]. We assume that the borehole is put into ex-  
ploitation at a constant volume flow rate. Let 

/ (p) = [ t  - ~ (Po - -  e ) p ,  

in which 15 is a coefficient dependent on the fracturing and the elastic 
properties [3]. We put (17 as 

1 0 r a 0q~l  i 0 0  
7 o, ~'| -E-~ = - ~ , o - ~  ' a ' = ~ - - ~ ( e ~ 1 7 6  (27 

We assume that  the flow rate remains constant after the start, i.e., 

that we have at the wall 

2~hkro { OP} , (3) 
q = ~  r[i--~(po--P)]a-~ r=rc~0 

in which h is the bed thickness and ~ is the viscosity of the liquid. We 

assume that initially the pressure is everywhere constant at 

P (r, 0) = Po > 0 or q) (r, O) = r > 0. (4) 

For an unbounded fractured bed we have also that 

p (co, t) = Po > 0 or (I) (cr t) = r > O. (5) 

We represent the solution as an infinite series of functions 

r  t ) = q ) 0  ~ + ~ ? r  t ) +  

+ ~.~ri~ (r, t) + ~2~r (r, t) + . . . .  (6) 

in which ~l(r, tT, q52(r, t), ~3(r, t7 . . . .  are to be determined. It fol- 
lows [4] from (6) that 

(r, t )  ( .(2. ~ 
% i + ~ q), (r, t) + ~ a), (, ,  t) + 

+-~2f(1 ,~( , ,  t )~  . . . .  ) = t + ~ - ~ - j  qh(r, t) + 

+ T i  ~O-e [ q h ( r ,  t) - 3  q h ' ( r ' 8  (I)o' t)] + Tt ~ n  s X 

,) _ ] [(I)a (r qh (r, t) (D~ (r, 7 ' 4,1)~ t)-F ~ ( P ? ( r ,  t) + - "" Y 

(.Q= t ~ q / ~ t h ~ o  ( 9 . . ~ ) ) .  (77 

Substitution of (6) and (7) into (2) gives us the following chain of 
differential equations: 

c)(lb 1 0 / OClh '. 
Ot -- Z 7 ~ 7  .r .--2;--), 

O(P~ 1 O (r 0'1~. 3 0qh 2 

0Os t 0 ~ , /  0Osx t 0 7 0q)l a 
Ot = L r ~r \ r - ' g '~  ff4-4~--oTo~ OT ((~ff)') 32(9o s Ot 

L = xr0 (Do s- (8) 

This has to be solved subject to boundary and initial conditions for 

~5r, ~2 ,  ~3, etc. 

r (r, 0) = r (r, 0) = �9 3 (r, 0) . . . . .  O, 

r (co, t) = r (~", t) = r (r162 t) . . . . .  0 , 

(r Oq)l/Or)r=%_r = - - t .  (9) 

Determinat ion of ~l(r, t 7 amounts to solution of a linear differential 
equation of the type found in heat  conduction [5], so we have 

oo 
r2 l e--~ Ol(r ,  t ) = E i ( - - u )  u =  ~ E i ( - - u ) = - -  --'~--d~. (10) 

u 

In accordance with (8), we find that 

3 0 6 
8q)d at O12 = 8~o~t Ei (-- u) e -u. (117 

Consequently, 

0--7 - = L  r Or \ -~--]--4--~/-o4t E i t - u ) e -  ' (127 

We introduce the new variable ~ = (u)l/z = r/2(~tT0t) t / z ,  which gives 

(127 the form 

dO2 0~ i dO~ 0~ d~O, { 0 ~ ) 2 +  

dO2 0 ~  3 
+ k d~- Or 2 4r Ei ( - -  u) e -=. (3.3) 

We put 

0~ r 

~ / - =  --  4 V X r o t  t Or 2 ] / z r 0  t 

which gives 

d20~ ~ 2  ( t )  3 Ei(__u)  e_U. 
a ~  + - -  2 ~ r 1 7 6  ~ = r ----9- (14) 

As ~0 = 1, we have from (147 that 

d2(P2 d(D~ / ~ t . u ~---~-+ --~- [2~ + @ =3Eq- ~)~- (157 

We get  an inhomogeneous differential equation whose right part 
contains total derivatives; (15) may  be solved by the method of vary-  
ing the comtants [6] .  

The fundamental  system of (15) without the right part is E i ( -gz) ,  1, 
SO 

r = 01 (~) @ C2 (~) Ei (_~2) , (16) 

in which the variables Ct(~) and Cz(g) are defined from 

dC1 dCe 
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d 
-~-  Ei (,-- ~) ~ =3Ei  ( - -  ~)e-~*. (17) 

(conrad) 

Integrating (17) and substituting into (].6) 

O~ (r, t) = s/~ Ei (--2u) - -  a/, e--uEi (--u)  - -  

- -  a/4 ~h Ei  ( - - u )  + a/~ ~h. (18) 

The constants ~ and ~ are determined from (9), namely 

/ 002 \ 

"g~oo 

and so ~ = 0 and r~ = 1. Then 

O~ (r, t) = 8/~ Ei (--2u) - -  ~/4e-V'Ei (--u) - -  a/4 Ei ( - -u) .  (19) 

All subsequent approximations may  be derived similarly. 
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We consider only the second approximation (errorwithin  permis-  
sible limits), and get  the following solution to (2) for borehole startup: 

(Pc ~(rc, t) = I -- f~Ei( - -  u) -)s pl,~ E i ( - - 2 u ) - -  

_ 3/~ e - ~  Ei  ( - -  u) - -  3i~ E~ ( - -  u)], (20)  

Formula (20) requkes laborious calculations, but for small  u with 
r = r c it can be written as 

2.25%0 t 
(De4 (re, t) = 1 @ ~ In ~ ~i- 

4~: r .  t 
+ a~ 0 . 7 5 1 ~ - - r  - 2.783 a~ = 

2.25Xro 4:4ro 
~ 1  ~ l n ~  +0 .75~21n rc 2 

- -  2.783Q ~ + (s + 0.759') In t = B1 + C11n t ,  

C~ = ~ (i + 0.75~), 

4~:ro B1 = I + ~ In 2'--25•176 @ 0.75s In - -  2.783 ~: ,  
rc2 Pc2 (21) 

which shows that processing of pressure-reduction curves requires con- 
struction of a transformed graph in coordinates ~ and log t, theslope 
of the straight-l ine part being determined. The resulting quadratic 
equation is solved to find D, which is used to determine kT0. The ac-  
curacy is improved by introducing the fourth term in the expansion of 
(6), solving a cubic equation for logt,  etc.  

Figure 1 shows the transformed curve for borehole 160-5 (Malgobek- 
Voznesemkoe deposit).., and this gives kT0 = 0.045 darch.  

Table 1 gives the data for the transformed curve, with the param-  
eters Qv = 878 m3/day, 8 = 0.0025 at -1, p = 0.306 centipoise, h = 13 
m, and k = 0.045 darcy. 

This approximate result is compared with the self-modeling result 
in Fig. 2 for Q = 100 ran/day, 8 = 0.005 at -z, g = 1 eentipoise, h = 

= 10 m, kT0 = 0.01 darcy, and Q* = 0.1. The approximate solution is 
clearly very close to the exact solution. 
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