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TRANSIENT MOTION OF A LIQUID TO A BOREHOLE IN A DEFORMABLE FRACTURED COLLECTOR

R. G. Isaev
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Transient filtration in a deformable fracture collector is described
by nonlinear differential equations of parabolic type

14 aPy _ 1 ap kg
7?{’/ G2 ﬁ?}'mﬁ‘» “r0=3B,* @

in which wyy is the coefficient of pressure permeability, B*T is the
coefficient of elastic capacity, f(P) is the pressure function, and Kk,
is the permeability for P = P,.

As for pressure recovery we seek a solution to (1) by the small-
parameter method [1,2]. We assume that the borehole is put into ex-
ploitation at a constant volume flow rate. Let
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in which B is a coefficient dependent on the fracturing and the elastic
properties [3]. We put (1) as
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We assume that the flow rate remains constant after the start, i.e.,
that we have at the wall
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in which h is the bed thickness and j is the viscosity of the liquid. We
assumne that initially the pressure is everywhere constant at

P(r,0) =P, >0 or D (r, 0) = Oy >0. %)
For an unbounded fractured bed we have also that
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We represent the solution as an infinite series of functions ¢
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in which &(r, ), ®,(r, t), ®3(r,t), ... are to be determined. It fol-

lows (4] from (6) that
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Substitution of (6) and (7) into (2) gives us the following chain of
differential equations:
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This has to be solved subject to boundary and initial conditions for
&y, ©3. P;, etc.

Gy (r, 0) =Dy (r, 0) = Dy (r, 0) =... =0,
@ (00, t) == @, (o, £) = Dy (o0, f) = ...= 0,
(r t’?‘.IJ;‘/ar)r:rc_’0 = —1. 9)

Determination of &,(r, t) amounts to solution of a linear differential
equation of the type found in heat conduction [5], so we have
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In accordance with (8), we find that
3 90 6 . u
W—‘(?T(DP: WE!(—u)e . 11
Consequently,
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We introduce the new variable £ = (u)l/2 = 1-/2(«,c1~0t)1/2 , which gives
(12) the form
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We put
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As @3 = 1, we have from (14) that
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We get an inhomogeneous differential equation whose right part
contains total derivatives; (15) may be solved by the method of vary-
ing the constants [6].

The fundamental system of (15) without the right part is Ei(-£%), 1,
S0

®, = C, (5) + C: (§) Bi (—E%, (16)
in which the variables Ci(§) and Cz(&) are defined from
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Integrating (1) and substituting into (16)

Dy (r, t) = % Ei (—2u) — 33 €Ei (—u) —
— ¥im Bi (—uw) 34y, (18)

The constants 7 and 7, are determined from (9), namely
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and so 7y = 0 and 7, = 1. Then
Dy (r, 1) = ¥y Bi (—2u) — 3/, "Bi (—u) — 3/, Bi (—u). (19)

All subsequent approximations may be derived similarly.

AP,at |t min Igt <1>1$ 4>3 - ‘1’2
0 0 —_ 1 0

9 0.5 — 0.9149 0.0851
16 1.0 0 0.8493 | 0.4507
18.5 1.5 0.18 0.8283 | 0.1717
20.0 2.0 0.30 0.8145 | 0.1855
21.0 2.5 0.40 0.8077 | 0.1923
22.0 3.0 0.48 0.7975 | 0.2025
22.5 3.5 0.54 0.79%44 0.2059
23.0 4.0 0.60 0.7874 | 0.2126
23.5 5.0 0.70 0.7844 0.2159
23.8 8.0 0.90 0.7807 | 0.2193
24.3 14.0 1.15 0.7774 | 0.2226
24.8 23.0 1.36 0.7741 0.2259

We consider oanly the second approximation (error‘within permis-
sible limits), and get the following solution to (2) for borehole startup:

O (re, 1) = 1 — QFi (— u) -+ Q2 [¥, Bi (— 2u) —
— 3, e Ei{(—u) — ¥, Ei (— wl. (20)
Formula.(20) requires laborious calculations, but for small u with
T = 1. it can be written as
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which shows that processing of pressure-reduction curves requires con-
struction of a transformed graph in coordinates qﬁ; and log t, theslope
of the straight-line part being determined. The resulting quadratic
equation is solved to find @, which is used to determine k1,. The ac~
curacy is improved by introducing the fourth term in the expansion of
(8), solving a cubic equation for logt, etc.

Figure 1 shows the transformed curve for borehole 160-5 (Malgobek-
Voznesenskoe deposit), and this gives kp, = 0.045 darch,

Table 1 gives the data for the transformed curve, with the param-
eters Q, = 378 m¥day, 8 =0,0025 at™!, ; = 0,306 centipoise, h = 13
m, and k = 0.045 darcy.

This approximate result is compared with the self-modeling result
in Fig, 2 for Q =100 m¥%day, 8 = 0,005 at=%, ;1 = 1 centipoise, h =
= 10 m, ko = 0.01 darcy, and QF = 0.1, The approximate solution is
clearly very close to the exact solution.
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